

(A Constituent college of Sri Siddhartha Academy of Higher Education, Deemed to be University, under section 3 of UGC act 1956, Vide MHRD GOI Notification no.F9-31/2006-U.3(A) dated:30/05/2008)

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

(Accredited by NBA)

Department of Computer Science and Engineering

Vision of the Department

To craft professionally skilled engineers with research orientation, innovative insights and a passion for life-long learning to meet the needs of Industry and Society.

Mission of the Department

M1: To offer need based curriculum in collaboration with industry.

M2: To inculcate professional skills with innovative thinking to address societal problems of multidisciplinary nature.

M3: To provide a congenial environment to learn and exhibit soft skills.

M4: To promote research culture and the need for life-long learning.

Program Educational Objectives (PEOs) - PG

PEO1: To apply advanced principles of computer science and engineering to solve real world research and development problems in industry and academia

PEO2: To inculcate lifelong learning skills in graduates prepare them to work in changing environments and multi-disciplinary teams globally.

PEO3: To instill leadership qualities in graduates with a sense of confidence professionalism and ethical attitude to produce professional leaders for serving the society

Program Outcomes (POs) - PG

Post Graduates will be able to:

PO1: Independently carry out research/investigation and development work to solve practical problems.

PO2: Write and present a substantial technical report / document

PO3: Demonstrate a degree of mastery over the area as per the specialization of the program. The mastery should be at a level higher than the requirements in the appropriate bachelor program

1st SEMESTER M.Tech.

SI No	C	ourse Code	Course Title	Teaching Dept.	L	Т	P	Credits	CIE Marks	SEE Marks	Total Mar ks	Exam Hrs.
1	PC	24CSE11	Advances in Algorithm and Applications	CSE	4	1	ı	4	50	50	100	3
2	PC	24CSE12	Advanced Computer Network	CSE	4	1	1	4	50	50	100	3
3	PC	24CSE13	Data Science with R	CSE	4	1	1	4	50	50	100	3
4	PC	24CSE14	Research Methodology	CSE	3	-	-	3	50	50	100	3
5	PE	24CSE15x	Professional Elective - I	CSE	3	1	ı	3	50	50	100	3
6	PE	24CSE16x	Professional Elective - II	CSE	3	-	ı	3	50	50	100	3
7	PC	24CSETS1	Technical Seminar -I	CSE	-		3	1.5	50	-	50	-
8	PC	24CSELB1	Advanced Algorithm and Data Science Lab	CSE	-	-	3	1.5	50	1	50	-
Cor		us Internal Ev	P-Practical/Drawing, CIE: aluation, SEE: Semester End	Total	21	•	6	24	400	300	700	•

P	Professional Elective-I	Professional Elective-II				
Course	Course Title	Course	Course Title			
Code		Code				
24CSE151	Artificial Intelligence and	24CSE161	Machine Learning			
	Expert Systems					
24CSE152	Block chain Technology	24CSE162	Internet of Things and			
			Applications			
24CSE153	Applied Cryptography	24CSE163	Virtualization & Cloud			
			Computing			

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

2nd SEMESTER M.Tech.

SI No	Cou	rse Code	Course Title	Teachi ng Dept.	L	Т	P	Credits	CIE Marks	SEE Marks	Total Marks	Exam Hrs.
1	PC	24CSE21	Big Data Analytics	CSE	4	-	-	4	50	50	100	3
2	PC	24CSE22	Computer Vision	CSE	4	-	-	4	50	50	100	3
3	PC	24CSE23	Advanced Operating System	CSE	4	-	-	4	50	50	100	3
4	PC	24CSE24	Cyber Security and Digital Forensics	CSE	3	-	-	3	50	50	100	3
5	PE	24CSE25x	Professional elective - I	CSE	3	-	-	3	50	50	100	3
6	PE	24CSE26x	Professional elective - II	CSE	3	-	-	3	50	50	100	3
7	PC	24CSETS2	Technical Seminar - II	CSE	-	-	3	1.5	50	-	50	-
8	PC	24CSELB2	Cyber Security and Digital Forensics Lab	CSE	-	-	3	1.5	50	-	50	-
CIE: Sem		nuous Intern	P-Practical/Drawing, al Evaluation, SEE:	Total	21	-	6	24	400	300	700	-

		Professional Ele	ective-IV
Course Code	Course Title	Course Code	Course Title
24CSE251	Pattern Recognition	24CSE261	Business Intelligence and Data Mining
24CSE252	High performance Computing	24CSE262	Advanced Storage Area Networks
24CSE253	Deep Learning	24CSE263	Advanced Mobile Computing

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

3rd SEMESTER M.Tech.

SI No	C	Course Code	Course Title	Teaching Dept.	L	T	P	Credits	CIE Marks	SEE Marks	Total Marks	Exam Hrs.
1	PC	24CSEIS1	Internship	CSE	-	-	-	9	100	-	100	-
2	PC	24CSEE1	Online Course: NPTEL/MOOC/S WAYA M	CSE				3	50	50	100	
3	PC	24CSEPW1	Project Phase-I	CSE	1	1	1	08	50	-	50	-
Prac Inte	ctical	Evaluation, SE	P- E: Continuous EE: Semester End	Total	-	ı	-	20	150	50	150	-

4th SEMESTER M.Tech.

SI No	Cou	ırse Code	Course Title	Teaching Dept.	L	T	P	Credit s	CIE Mark s	SEE Marks	Total Marks	Exam Hrs •
1	PC	24CSEPW2	Professional	CSE	-	-	-	20	100	200	300	-
			Work Phase- II									
	2 Paper Publications is compulsory (Conference/Journal)											
Con	L: Lecture, T-Tutorial, P-Practical/Drawing, CIE: Continuous Internal Evaluation, SEE: Semester End Examination											

Credits Distribution: 1^{st} Sem=24, 2^{nd} Sem=24, 3^{rd} Sem=20, 4^{th} Sem=20, Total Credits=24+24+20+20=88 Credits

Department: Computer Science & Engineering Semester: I

Subject: Advances in Algorithm and Applications

Subject Code: 24CSE11 L-T-P-C: 4-0-0-4

Sl. No	Course Objectives
1	To Learn the concepts of advances in algorithms to use in applications.
2	To disseminate knowledge on how to create strategies for dealing with real world problems
3	To develop efficient algorithms for use in a variety of engineering design settings.
4	To provide analytical framework for the design and analysis of algorithms.

Unit	Description	Hrs
I	Divide and Conquer: Strassen's algorithm for matrix multiplication, The recursion-tree	10
	method for solving recurrences, A randomized version of quicksort.	
	Greedy Algorithms: An activity-selection problem, Huffman codes	
II	Dynamic Programming: Matrix Chain Multiplication, Longest Common Sub sequence.	10
	Amortized Analysis: Stack operation and Incrementing Binary counter -The aggregate	
	method, the accounting method, the potential method, and	
	Dynamic tables.	
III	String Matching: Naïve String-matching Algorithms, KMP algorithm, Rabin-	10
	Karp Algorithm, String matching with Finite Automata.	
IV	Network Flow Algorithms: Bellman - Ford Algorithm, Single source shortest paths in a	10
	directed acyclic graph, Johnson's Algorithm for sparse graphs, Flow	
	Networks, Ford-Fulkerson method, Maximum bipartite matching.	
V	Number -Theoretic Algorithms: Elementary notions; GCD; Modular	10
	Arithmetic; Solving modular linear equations; The Chinese remainder theorem; Powers of an	
	element; RSA cryptosystem; Primarily testing.	

Course Outcomes:

Course outcome	Descriptions
CO1	Devise recurrence relations and amortized cost of various operations.
CO2	Apply various algorithm paradigms to solve scientific and real-life problems.
СОЗ	Demonstrate the string matching and network flow algorithms relating to real-life problems.
CO4	Understand and apply Number -Theoretic Algorithms.

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Text Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Introduction to algorithms.	Cormen, Thomas H.,	MIT press, 2022
		Charles E. Leiserson,	ISBN 9780262046305
		Ronald L. Rivest, and	
		Clifford	
		Stein	

Reference Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Algorithms	Kenneth A. Berman,	Cengage Learning, 2002.
		Jerome	
		L. Paul	
2	Algorithm Design,	Jon Kleinberg and	Pearson Education, 1"Edition,
		EvaTardos	2014.
3	Fundamentals of Computer	Ellis Horowitz,	2nd Edition, Universities press,
	Algorithms	SartajSahni,	2007
		S.Rajasekharan	

Signature of the course coordinator

Signature of the HoD

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Department: Computer Science & Engineering Semester: I

Subject: Advanced Computer Network

Subject Code: 24CSE12 L-T-P-C:4-0-0-4

Sl. No	Course Objectives			
1	To understand the functionalities of network layer, transport layer and application			
layer protocols				
2	To acquire knowledge on congestion control, flow control and error control			
	mechanisms			
3	To describe the parameters used to measure the QoS in a network			
4	To understand the working of different protocols in respective applications			

Unit	Description	Hrs		
I	SIMPLE INTERNETWORKING (IP): What Is an Internetwork?, Service Model,	10		
	Global Addresses, Datagram Forwarding in IP Address Translation (ARP), Host			
	Configuration (DHCP), Error Reporting (ICMP), Virtual Networks and Tunnels,			
	Routing Network as a Graph , Distance Vector (RIP), Link State (OSPF), Metrics,			
	Routing for Mobile hosts, Router implementation, Global Internet Subnetting Classless			
	Routing (CIDR) Interdomain Routing (BGP) Routing Areas IP Version 6 (IPv6).			
	Multicast: Multicast addresses, Multicast Routing, Multicast Label Switching:			
	Destination Based Forwarding, Explicit Routing,			
	Virtual private Network and Tunnels.			
II	INTRODUCTION TO THE TRANSPORT LAYER: Transport-Layer Services 10			
	Process-to-Process Communication, Addressing Port Numbers, Encapsulation and			
	Decapsulation, Multiplexing and Demultiplexing, Flow Control, Error Control,			
	Combination of Flow and Error Control, Congestion Control, Connectionless and			
	Connection-Oriented Services, Transport-Layer Protocols Simple Protocol, Stop- and-			
	Wait Protocol, Go-Back-N Protocol, Selective-Repeat Protocol, Bidirectional Protocols:			
	Piggybacking			
	User Datagram Protocol (UDP): Introduction, User Datagram, UDP Services			
	Process-to-Process Communication, Connectionless Services, Flow Control, Error			
	Control, Congestion Control, Encapsulation and Decapsulation,			
	Queuing, Multiplexing and Demultiplexing, Comparison between UDP and			

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

	Generic Simple Protocol, UDP Applications UDP Features, Typical				
	Applications, UDP Package Control-Block Tabl e, Input Queues, Control-Block				
	Module, Input Module, Output Module, Examples.				
III	TRANSMISSION CONTROL PROTOCOL (TCP): TCP Services Process-to-	10			
	Process Communication Stream Delivery Service, Full-Duplex Communication,				
	Multiplexing and Demultiplexing, Connection-Oriented Service, Reliable Service, TCP				
	Features Numbering System, Flow Control, Error Control, Congestion Control, Segment				
	Format, Encapsulation, A TCP Connection: Connection Establishment, Data Transfer,				
	Connection Termination. Connection Reset State Transition Diagram: Scenarios,				
	Windows In TCP Send Window, Receive Window, Flow Control Opening and Closing				
	Windows, Shrinking of Windows, Silly Window Syndrome, Error Control: Checksum,				
	Acknowledgment Retransmission, Out-of-Order Segments, FSMs for Data Transfer in				
	TCP, Some Scenarios, Congestion Control: Congestion Window,				
	Congestion policy.				
IV	Stream Control Transmission Protocol (SCTP) INTRODUCTION, SCTP	10			
	SERVICES Process-to-Process Communication Multiple Streams Multihoming Full-				
	Duplex Communication Connection-Oriented Service Reliable Service SCTP				
	FEATURES Transmission Sequence Number (TSN) Stream Identifier (SI) Stream				
	Sequence Number (SSN) Packets Acknowledgment Number, Flow Control, Error				
	Control Congestion Control PACKET FORMAT General Header, Chunk AN SCTP				
	ASSOCIATION: Association Establishment, Data Transfer, Association Termination,				
	Association Abortion STATE TRANSITION DIAGRAM Scenarios FLOW				
	CONTROL Receiver Site Sender Site A Scenario ERROR CONTROL Receiver Site				
	Sender Site Sending Data Chunks Generating SACK Chunks				
	CONGESTIONCONTROL Congestion Control and Multihoming Explicit				
	Congestion Notification.				
V	Quality of Service, Application Requirements, Integrated Services (RSVP),	10			
	Differentiated Services (EF, AF) Equation-Based Congestion Control.				
	Applications: Traditional Applications Electronic Mail (SMTP, MIME, IMAP)				
	World Wide Web (HTTP), Name services (DNS), Network Management				

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

(SNMP), Web Services , Custom Application protocols (WSDL,SOAP) , A	
generic Application protocol (REST)	

Course Outcomes:

Course outcome	Descriptions		
CO1	Interpret the functionalities of network layer protocols		
CO2	Design solutions for network related problems and analyze the performance		
CO3	Demonstrate the working of different congestion control mechanisms		
CO4	Analyze the performance of transport layer and application layer protocols		

Text Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Computer Networks- A System	Larry. L. Peterson	4 th Edition, Elsevier, 2007
	Approach	and Bruce. S Davie	
2	TCP/IP Protocol Suite	Behrouz A.	4 th Edition, McGrawHill
		Forouzan	

Reference Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Data Communications and	Behrouz A. Forouzan	4th Edition, McGrawHill
	Networking		
2	Data and Computer	William Stallings	8th Edition, Pearson
	Communication		Education
3	Communication Networks-	Alberto Leon Garcia	2nd Edition, McGrawHill
	Fundamental Concepts and	and Widjaja	
	Key Architectures		

Signature of the course coordinator

Signature of the HoD

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Department: Computer Science and Engineering Semester: I

Subject: Data Science with R

Subject Code: 24CSE13 L - T - P - C: 4-0-0-4

Sl. No	Course Objectives	
1	tudents will develop relevant programming abilities.	
2	Students will demonstrate proficiency with statistical analysis of data.	
3	Students will develop the ability to build and assess data-based models.	
4	Students will execute statistical analyses with professional statistical software.	

Unit	Description	Hrs		
I	Introduction: What Is Data Science ?, Why R ?, Overview of the R Programming 1			
	Language: Installing R, Development Tools, R Programming Language, Packages,			
	Running R Code. Getting Data into R:Reading Data,			
	Cleaning Up Data.			
II	Data Visualization: Introduction, Basic Visualizations, Layered Visualizations Using	10		
	ggplot2, Interactive Visualizations Using Shiny. Exploratory Data Analysis:			
	Summary Statistics, Getting a Sense of Data Distribution, Putting It			
	All Together: Outlier Detection, Introduction: Tableau/PowerBi			
III	Regression: Introduction, Parametric Regression Models, Nonparametric	10		
	Regression Models,			
IV	Classification: Introduction, Parametric Classification Models, Nonparametric	10		
	Classification Models			
V	Text Mining:Introduction, Dataset, Reading Text Input Data, Common Text	10		
	Pre processing Tasks, Term Document Matrix, Text Mining Applications.			

Course Outcomes:

Course outcome	Descriptions
CO1	Understand the semantics, data handling and control statements in R.
CO2	Analyze the libraries for data manipulation and conduct hypothesis tests for statistical inference.
CO3	Synthesize data to fit linear and nonlinear models
CO4	Implement clustering, Text Mining optimization and data visualization using R.

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Text Books:

Sl No	Text Book title	Author	Volume and Year of Edition	of
1	Beginning Data Science	Manas A. Pathak	I, Springer, 2014, ISBN 978-	
	with R		3-319-12065-2	

Reference Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Algorithms for Data Science	Brian Steele,	1, Springer, 2016, 978-3-319-
		John Chandler,	45795-6
		Swarna Reddy	
2	Practical data science with R	Nina Zumel, John	2, Manning, 2020,
		Mount	9781617295874

Signature of the course coordinator

Signature of the HoD

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University)
Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Department: Computer Science & Engineering Semester: I

Subject: Research Methodology

Sl. No	Course Objectives	
1	To introduce the fundamentals of research methodology.	
2	Γο learn data collection and analysis.	
3	To design and testing of research work.	
4	To gain knowledge about intellectual property rights.	

Description	Hrs			
Introduction:				
Objective of Research; Definition and Motivation; Types of Research; Research Approaches; Steps in Research Process; Criteria of Good Research; Ethics in Research.				
Research Formulation and Literature Review:	8			
Problem Definition and Formulation; Literature Review; Characteristics of Good Research Question; Literature Review Process.				
Data Collection:				
Primary and Secondary Data; Primary and Secondary Data Sources; Data Collection Methods; Data Processing; Classification of Data.				
Data Analysis:				
Statistical Analysis; Multivariate Analysis; Correlation Analysis; Regression Analysis; Principle Component Analysis.				
Research Design:				
Need for Research Design; Features of a Good Design; Types of Research Designs; Induction and Deduction.				
Hypothesis Formulation and Testing:	8			
Hypothesis; Important Terms; Types of Research Hypothesis; Hypothesis Testing; Z-Test; t-Test; f-Test; Making a Decision; Types of Errors; ROC Graphics.				
	Objective of Research; Definition and Motivation; Types of Research; Research Approaches; Steps in Research Process; Criteria of Good Research; Ethics in Research. Research Formulation and Literature Review: Problem Definition and Formulation; Literature Review; Characteristics of Good Research Question; Literature Review Process. Data Collection: Primary and Secondary Data; Primary and Secondary Data Sources; Data Collection Methods; Data Processing; Classification of Data. Data Analysis: Statistical Analysis; Multivariate Analysis; Correlation Analysis; Regression Analysis; Principle Component Analysis. Research Design: Need for Research Design; Features of a Good Design; Types of Research Designs; Induction and Deduction. Hypothesis Formulation and Testing: Hypothesis; Important Terms; Types of Research Hypothesis; Hypothesis Testing; Z-Test;			

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

IV	Test Procedures-Parametric and Non Parametric Tests: ANOVA; Mann- Whitney Test; Kruskal-Wallis Test; Chi-Square Test; Multi-Variate Analysis. Presentation of the Research Work-Business Report; Technical Report; Research Report; General Tips for Writing Report; Presentation of Data: Oral Presentation; Bibliography and References; Intellectual Property Rights; Open-Access Initiatives; Plagiarism.	8
V	Law of Patents, Patent Searches, Ownership, Transfer Patentability Design Patents-Double Patenting – Patent Searching, Patent Application Process, Prosecuting the Application, Post-issuance Actions, Term and Maintenance of Patents. Ownership Rights, Sole and Joint Inventors, Inventions Made by Employees and Independent Contractors, Assignment of Patent Rights, Licensing of Patent Rights, Invention Developers and Promoters. Patent Infringement,New Developments and International Patent Law, Direct Infringement, Inducement to Infringe, Contributory Infringement, First Sale Doctrine, Claims Interpretation, Defenses to Infringement, Remedies for Infringement, Resolving an Infringement Dispute, Patent Infringement Litigation. New Developments in Patent Law	8

Course Outcomes:

Course outcome	Descriptions
CO1	Gain the sound of knowledge of distinguish research methods
CO2	Understand to analysis and writing a technical research paper.
CO3	Capable of testing, publishing, review research papers effectively.
CO4	Achieving knowledge about IPR and patent filing.

Text Books:

Sl No	Text Book title Author		Volume and Year of Edition		
1	Research Methodology. Methods & Technique	Kothari. C.R.	2nd Edition, New Age International Publishers.		
2	Practical Research: Paul D. Leedy, planning and Design Jeanne E, Ormrod		8th Edition, Pearson College Div; (January 1, 2005)		

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Reference Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Research methodology	S.S. Vinod Chandra, S. Anand Hareendran	Fifth Edition, 2017.
2	Tests, Measurements and Research methods in Behavioural	A.K. Singh.	Bharti Bhawan; Sixth edition (1 January 2019); Bharti Bhawan
3	Intellectual Property – Copyrights, Trademarks, and Patents	Richard Stim,	Cengage; 2nd edition (1 November 2012)

Signature of the course coordinator

Signature of the HoD

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University)
Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Department: Computer Science & Engineering Semester: I

Subject: Artificial intelligence and expert systems

Subject Code: 24CSE151 L-T-P-3-0-0-3

C:

Sl. No	Course Objectives				
1	Study the concepts of Artificial Intelligence.				
2	Learn the methods of solving problems using Artificial Intelligence				
3	Learn the knowledge representation techniques, reasoning techniques and planning				
4	Introduce the concepts of Expert Systems and Statistical Reasoning				

Unit	Description	Hrs
I	Introduction and Problems, Problem Spaces and Search : What is AI? Intelligent agents: agents and environment; rationality; the nature of environment; the structure of agents. Problem-solving; problem-solving agents; example problems; searching for solution; uninformed search strategies. Defining the problem as a state space search; production systems; problem characteristics; production system characteristics; issues in the design of search programs.	08
II	Heuristic search techniques: Generate-and-test; hill climbing; best-first search; problem reduction; constraint satisfaction.	08
III	Knowledge representation and predicate logic: Representations and mappings; approaches to knowledge representation; issues in knowledge representation; the frame problem. Representing simple facts in logic; representing instance and isa relationships; computable functions and predicates; resolution.	08
IV	Logical Agents: Knowledge-Based Agents, The Wumpus World, Logic, Propositional Logic, Reasoning Patterns in Propositional Logic Resolution, Effective propositional inference, Agents Based on Propositional Logic, First-Order Logic, Representative Revisited, Syntax and semantics of First-Order Logic, Using First-order Logic, Knowledge Engineering in First-Oder Logic.	08
V	Statistical Reasoning and Expert Systems: Probability and Bayes Theorem; Certainty Factors and Rule-Based Systems; Bayesian Networks; Dempster-Shafer Theory; Fuzzy Logic. Representing and Using Domain Knowledge; Expert System Shells; Explanation; Knowledge Acquisition.	08

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Course Outcomes:

Course outcome	Descriptions
CO1	Demonstrate awareness of informed search and exploration methods.
CO2	Explain about AI techniques for knowledge representation, planning and uncertainty Management.
CO3	Develop knowledge of decision making and learning methods.
CO4	Explain the concept of expert systems and statical reasoning.

Text Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Artificial Intelligence	Elaine Rich, Kevin	3rd Edition, Tata McGraw
		Knight	Hill, 2009
2	Artificial Intelligence A Modern	Stuart Russel, Peter	1. 2nd Edition, Pearson
	Approach	Norvig	Education, 2003

Reference Books:

Sl No	Text Book title			Author	Volume and Year of Edition
1	Principles Intelligence	of	Artificial	Nils J. Nilsson	Elsevier, 1980

Signature of the course coordinator

Signature of the HoD

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University)
Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Department: Computer Science & Engineering Semester: I

Subject: Block Chain Technology

Subject Code: 24CSE152 L - T - P - C: 3 - 0 - 0 - 3

Sl. No	Course Objectives
1	Understand the fundamentals of blockchain technology
2	Describe the working principle of consensus model and forking
3	Explore different blockchain platforms
4	Understand the applications of Blockchain technology

Unit	Description	Hrs
I	Introduction, Purpose and Scope, Results of the Public Comment Period, Document Structure, Blockchain Categorization, Permissionless, Permissioned, Blockchain Components, Cryptographic Nonce, Transactions, Asymmetric-Key Cryptography, Ledgers, Blocks, Chaining Blocks, Consensus Models, Forking	8
II	Smart Contracts, Blockchain Limitations and Misconceptions, Application Considerations, Additional Blockchain Considerations Introduction to Cryptography & Cryptocurrencies, Cryptographic Hash Functions, Hash Pointers and Data Structures, Digital Signatures, Public Keys as Identities, A Simple Cryptocurrency	8
III	How Bitcoin Achieves Decentralization, Centralization vs. Decentralization, Distributed consensus, Consensus without identity using a block chain, Incentives and proof of work, Mechanics of Bitcoin, Bitcoin transactions, Bitcoin Scripts, Applications of Bitcoin scripts, Bitcoin blocks, The Bitcoin network, Limitations and improvements	8
IV	Alternative Coins: Introducing altcoins, Theoretical foundations, Difficulty adjustment and retargeting algorithms, Bitcoin limitations, Extended protocols on top of Bitcoin, Development of altcoins, Initial Coin Offerings (ICOs), Ethereum 101: An overview, The Ethereum Network, Components of the Ethereum ecosystem, The Ethereum Virtual Machine (EVM)	8
V	Block chain -Outside of Currencies: Internet of Things, Government, Health, Finance, Media, Scalability and Other challenges	8

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Course Outcomes:

Course outcome	Descriptions
CO1	Analyze the fundamental elements of block chain technology
CO2	Demonstrate the use of smart contracts and consensus models in implementing blockchains
CO3	Analyze the design principles of different distributed ledger platforms including Ethereum, Bitcoin
CO4	Examine the applications of blockchain beyond cryptocurrencies

Text Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Blockchain Technology	Dylan Yaga, Peter	NIST Report 8202, US
	Overview	Mell, Nik Roby,	Department of Commerce, Oct
		Karen Scarfone	2018.
2	Block chain, Blueprint for A	Melanie Swan	O'Reilly
	New Economy		
3	Mastering Blockchain	Imran Bashir	Packt Publishing Ltd, Third
			Edition, August 2020

Reference Books:

Sl No	Text Book title		Author	Volume and	Year of Edition
1	Block cha	ain Expert,	Sainul Abideen	Cybrosys	Technologies.
	BlockChain E-B	ook		https://www.b	olockchainexpert.
				uk/book/block	kchain-book.pdf

Signature of the course coordinator

Signature of the HoD

Department: Computer Science & Engineering Semester: I

Subject: Applied cryptography Subject Code: 24CSE153

L - T - P - C: 3 - 0 - 0 - 3

Sl. No	Course Objectives
1	Student learns the basic concepts of symmetric cryptography and simple encryption methods.
2	Deploy encryption techniques to secure data in transit across data networks
3	Distinguish key distribution and management schemes.
4	Explain standard algorithms used to provide confidentiality, integrity and authenticity.

Unit	Description	Hrs	
I	Overview of Cryptography: Introduction, Information security and cryptography:	08	
	Background on functions: Functions (1-1, one-way, trapdoor one-way), Permutations,		
	and Involutions. Basic terminology and concepts, Symmetric-key encryption: Overview		
	of block ciphers and stream ciphers, Substitution ciphers and transposition ciphers,		
	Composition of ciphers, Stream ciphers, The key space. Classes of attacks and security		
	models: Attacks on encryption schemes, Attacks on protocols, Models		
	for evaluating security, Perspective for computational security.		
II	Symmetric & Symmetric Cryptography: Classical encryption techniques,	08	
	Block cipher design principles and modes of operation, Data encryption standard,		
	Evaluation criteria for AES, AES cipher, Principles of public key cryptosystems, The		
	RSA algorithm, Key management – Diffie Hellman Key exchange, Elliptic curve		
	arithmetic-Elliptic curve cryptography.		
III	Mathematical Background: Probability theory, Information theory,	08	
	Complexity theory, Number theory, Abstract algebra, Finite fields, The integer		
	factorization problem, The RSA problem, The Diffie-Hellman problem,		

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

	Composite moduli.	
	Number Theory: Introduction to number theory, Overview of modular arithmetic,	
	discrete logarithms, and primality/factoring, Euclid's algorithm, Finite fields, Prime	
	numbers, Fermat's and Euler's theorem- Testing for	
	primality, A quick introduction to groups, rings, integral domain and fields.	
IV	Block Ciphers: Introduction and overview, Background and general concepts:	08
	Introduction to block ciphers, Modes of operation, Exhaustive key search and multiple	
	encryptions.	
	Classical ciphers and historical development: Transposition ciphers (background),	
	Substitution ciphers (background), Poly alphabetic substitutions and Vigenere ciphers	
	(historical). Poly alphabetic cipher machines and rotors (historical), Cryptanalysis of	
	classical ciphers (historical).	
***	Quantum Cryptography and Quantum Teleportation: Heisenberg uncertainty	08
V	principle, polarization states of photons, quantum cryptography using polarized	
	photons, local vs. nonlocal interactions, entanglements, EPR paradox, Bell's theorem,	
	Bell basis, teleportation of a single qubit theory and	
	experiments.	

Course Outcomes:

Course outcome	Descriptions
CO1	Apply the OSI security architecture and classical encryption techniques for simple applications
CO2	Compare various cryptographic techniques.
CO3	Analyze the vulnerabilities in any computing system.
CO4	Evaluate security mechanisms using rigorous approaches, including theoretical.

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Text Books:

Sl No	Text Book title			Author		Volume Edition	and	Year	of
1	Handbook Cryptography	of .	Applied	Alfred J. Paul C. van Scott A. Va CRC Press and Francis	n Oorschot, anstone, s, Taylor	ISBN-13: 0.	978-0-8	34-938523	}-

Reference Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Applied Cryptography:	Bruce Schneier,	2nd Edition,
	Protocols, Algorithms, and Source Code in C		ISBN:0-471-22357-3.
2	Cryptography and Network Security,	William Stallings,	6 th Edition, ISBN-13: 978-0- 13-335469-0.'Far

Signature of the course coordinator

Signature of the HoD

Semester: I

Department: Computer Science & Engineering

Subject: Machine learning

Subject Code: 24CSE161 L-T-P-C:3 - 0 - 0 - 3

Sl. No	Course Objectives
1	To introduce the fundamentalsof research methodology.
2	To learn data collection and analysis.
3	To design and testing of research work.
4	To gain knowledge about intellectual property rights.

Unit	Description	Hrs
I	Introduction: if data had mass, the earth would be a black hole: learning, machine	8
	learning, types of machine learning, supervised learning, regression, classification, the	
	machine learning process.	
	Concept learning and decision trees: Learning Problems, Designing Learning	
	systems, Perspectives and Issues, Concept Learning Version Spaces and Candidate	
	Elimination Algorithm, Inductive bias, Decision Tree learning, Representation,	
	Algorithm, Heuristic Space Search	
II	Neural networks and genetic algorithms: Neural Network Representation, Problems,	8
	Perceptrons, Multilayer Networks and Back Propagation Algorithms, Advanced	
	Topics, Genetic Algorithms, Hypothesis Space Search, Genetic Programming, Models	
	of Evolution and Learning.	
III	Bayesian and computational learning: Bayes Theorem, Concept Learning,	8
	Maximum Likelihood, Minimum Description Length Principle, Bayes Optimal	
	Classifier, Gibbs Algorithm, Naïve Bayes Classifier, Bayesian Belief Network, EM	
	Algorithm, Probably Learning, Sample Complexity for Finite and Infinite Hypothesis	
	Spaces, Mistake Bound Model.	

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

IV	Instant based learning and learning set of rules: K- Nearest Neighbor Learning,	8
	Locally Weighted Regression, Radial Basis Functions, Case-Based Reasoning,	
	Sequential Covering Algorithms, Learning Rule Sets, Learning First Order Rules,	
	Learning Sets of First Order Rules, Induction as Inverted Deduction, Inverting	
	Resolution	
V	Analytical learning and reinforced learning: Perfect Domain Theories, Explanation	8
	Based Learning, Inductive-Analytical Approaches, FOCL Algorithm, Reinforcement	
	Learning, Task Q-Learning, Temporal Difference Learning	

Course Outcomes:

Course outcome	Descriptions	
CO1	Cable to identify and differentiate the machine learning problems.	
CO2	Ability to investigate on model evolution learning.	
CO3	Knowledge about theory of probability and statistics related to machine learning	
CO4	Adequate to understand the concepts of computational intelligence.	

Text Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Machine Learning	Tom M. Mitchell	McGraw-Hill Education, 2013
2	Machine Learning An Algorithm Perspective		CRC Press, Taylor and Francis Group, 2 nd edition, ,2015

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Reference Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Introduction to Machine Learning	Ethem Alpaydin	PHI Learning Pvt. Ltd, 2 nd Ed., 2013
2	The Elements of Statistical Learning	T. Hastie, R. Tibshirani, J. H	Springer, 1st edition, 2001

Signature of the course coordinator

Signature of the HoD

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Department: Computer Science & Engineering Semester: I

Subject: Internet of things and application

Subject Code: 24CSE162 L-T-P-C: 3-0-0-3

Sl. No	Course Objectives	
1	To study the fundamentals and Access technologies.	
2	To study the design methodology and different IoT hardware platforms	
3	To study the basics of IoT Data Analytics and supporting services.	
4	To study about various IoT case studies and industrial applications.	

Unit	Description	Hrs
I	Fundamentals of iot: Evolution of Internet of Things, Enabling Technologies, M2M Communication, IoT World Forum (IoTWF) standardized architecture, Simplified IoT Architecture, Core IoT Functional Stack, Fog, Edge and Cloud in IoT, Functional blocks of an IoT ecosystem, Sensors, Actuators, Smart Objects and Connecting Smart Objects.	08
II	Iot protocols: IoT Access Technologies: Physical and MAC layers, topology and Security of IEEE 802.15.4, 802.11ah and Lora WAN, Network Layer: IP versions, Constrained Nodes and Constrained Networks,6LoWPAN, Application Transport Methods: SCADA, Application Layer Protocols: CoAP and MQTT.	08
III	Design and development: Design Methodology, Embedded computing logic, Microcontroller, System on Chips, IoT system building blocks IoT Platform overview: Overview of IoT supported Hardware platforms such as: Raspberry pi, Arduino Board details	08
IV	Data analytics and supporting services: Data Analytics: Introduction, Structured Versus Unstructured Data, Data in Motion versus Data at Rest, IoT Data Analytics Challenges, Data Acquiring, Organizing in IoT/M2M, Supporting Services: Computing Using a Cloud Platform for IoT/M2M Applications/Services, Everything as a service and Cloud Service Models.	08
V	Case studies/industrial applications: IoT applications in home, infrastructures, buildings, security, Industries, Home appliances, other IoT electronic equipment's, Industry 4.0 concepts.	08

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Course Outcomes:

Course outcome	Descriptions
CO1	Understand the basics of IoT.
CO2	Implement the state of the Architecture of an IoT.
CO3 Understand design methodology and hardware platforms involved in IoT.	
CO4	Understand how to analyze and organize the data.
CO5	Compare IOT Applications in Industrial & realworld.

Text Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	IoT Fundamentals:	David Hanes, Gonzalo	Cisco Press 2017
	Networking Technologies,	Salgueiro, Patrick	
	Protocols and Use Cases for	Grossetete, Rob Barton	
	Internet of Things	and Jerome Henry	
2	Internet of Things –	Arshdeep Bahga, Vijay	Universities Press, 2015
	A hands-on	Madisetti	
	approach		N. C. IVII
3	Internet of Things:	Rajkamal	McGraw Hill
	Architecture, Design		HigherEducation
	Principles And Applications		

Reference Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	The Internet of Things – Key applications and Protocols.	Olivier Hersent, David Boswarthick	2012
2	From Machine-to-Machine to the Internet of Things – Introduction to a New Age of Intelligence.	Jan Ho" ller, VlasiosTsiatsis, Catherine Mulligan, Stamatis, Karnouskos, Stefan Avesand. David Boyle	Elsevier 2014.
3	Architecting the Internet of Things.	Dieter Uckelmann, Mark Harrison, Michahelles and Florian (Eds).	Springer,2011.

Signature of the course coordinator

Signature of the HoD

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Department: Computer Science & Engineering Semester: I

Subject: Virtualization and Cloud computing

Subject Code: 24CSE163 L-T-P-C: 3-0-0-3

Sl. No	Course Objectives	
1	Provide comprehensive view to different aspects of cloud computing like, service	
1	models, development models and challenges.	
2	Introduce to cloud virtualization, with different type of virtualization and capacity	
2	planning metrics to clouds.	
3	Know the concrete concepts of map reduce and extensions.	
4	Contrast how Cloud Service providers is helpful in Cloud Computing.	

Unit	Description	Hrs
I	Introduction: Grid computing, Essentials, Benefits, Why Cloud?, Business and IT Perspective, Cloud and Virtualization, Cloud Services Requirements, Cloud and Dynamic Infrastructure, Cloud Computing Characteristics, Cloud Adoption, Cloud rudiments, (Book 1) Clustering, Difference between Grid and Cluster computing, Characteristics of Cluster and Grid Computing, On demand computing	08
II	Cloud Deployment and Service Models: Deployment Models: Introduction, Cloud Characteristics, Measured Service, Cloud Models, Security in a Public Cloud, Public versus Private Clouds, Cloud Infrastructure Self Service. Service Models: Introduction, Gamut of Cloud Solutions, Principal Technologies, Cloud Strategy, Cloud Design and Implementation using SOA, Conceptual Cloud Model, Cloud Service defined.	08
III	Virtualization: Introduction, Characteristics of Virtualized environments, Taxonomy of Virtualization techniques, Virtualization and Cloud computing, Pros and Cons of Virtualization, Technology Examples: Vmware: Full Virtualization (Chapter 3 from book 2), Virtualization for x86 Architecture, Hypervisor Management Software, Virtual Infrastructure Requirements	08
IV	Cloud Service Providers: Heavy duty and Batch processing, Amazon cloud services, Google cloud platform, IBM smart cloud services, Microsoft Windows Azure, What is Hadoop?, Four phases of a Cloud application, other providers	08
V	Map Reduce and Extensions Parallel computing, The Map Reduce model, Applications of Map Reduce, Parallel efficiency of Map Reduce, Relational Operations using Map Reduce, Enterprise Batch processing using Map Reduce	08

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Course Outcomes:

Course outcome Descriptions		
CO1	Define Cloud Computing and characteristics and various types of cloud	
	services.	
CO2	Describe importance of virtualization in Cloud Computing.	
CO3	Explain various types of virtualizations, service providers and map reduce	
COS	extensions.	
CO4	Discuss Cloud Development and Service Models and various issues.	

Text Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Cloud Computing: Insights into New-Era Infrastructure	Dr. Kumar Saurabh	Wiley India publications, 2012
2	Mastering Cloud Computing"	RajkumarBuyya,Christian Vecchiola,S.ThamaraiSel vi	
3	Cloud computing	Dr.U.S.Pandey, Dr.KavitaChoudhary	S.Chand Publications
4	Cloud computing: A practitioner's guide	Aravind Doss, Rajeev Nanda	McGraw hill Education PvtLtd

Reference Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Cloud computing – A practical approach	Anthony T Velte, Toby J. Velte, Ph.D., Robert Elsenpeter	McGraw Hill.
2	Cloud Computing	Michael Miller	Pearson Education, New Delhi, 2009.

Signature of the course coordinator

Signature of the HoD

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Department: Computer Science & Engineering Semester: I

Subject: Advanced Algorithm and Data Science Lab

Subject Code: 24CSELB1 L-T-P- C: 0-0-3-1.5

Laboratory Work:

	Experiment Description
PART A	Implement the Algorithms which are discussed in the course CSE101

	Experiment Description
PART I	Solve the given data science problems by applying the concepts discussed in the course 24 CSE13.

Course Outcomes:

Course outcome	Descriptions
CO1	Analyze and design efficient algorithms for moderately difficult computational problems.
CO2	Apply the algorithms related to real-life problems.
CO3	Understand the semantics, data handling and control statements in R.
CO4	Implement clustering, optimization and data visualization using R, Tableau/PowerBi.

Signature of the course coordinator

Signature of the HoD

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Department: Computer Science & Engineering Semester: II

Subject: Big data analytics Subject Code: 24CSE21

L - T - P - C: 4-0-0-4

Sl. No	Course Objectives
1	Understand the Big Data Platform and its Use cases.
2	Introduce students the concept and challenge of big data.
3	Provide HDFS Concepts and Interfacing with HDFS.
4	Teach students in applying skills and tools to manage and
4	analyze the big data.

nit	Description	Hrs		
I	Understanding Hadoop Ecosystem: Introducing Hadoop, Cloud Computing and Big	10		
	Data:Cloud Delivery Models, Cloud Services for Big Data, Cloud Providers in Big Data			
	Market Hadoop Ecosystem, Hadoop Distributed File System: HDFS Architecture,			
	Concept of Blocks in HDFS in HDFS Architecture, NameNodes and DataNodes, HDFS			
	commands, Features of			
	HDFS, MapReduce, Hadoop YARN.			
II	Introducing HBase: HBase Architecture, Regions, Storing Big Data with Hbase,	10		
	Interacting with Hadoop Ecosystem, Hbase in Operation – Programming with HBase,			
	Combining HBase and HDFS: REST and Thrift, Data Integrity in HDFS, Features of			
	HBase, Role of HBase in Big dataProcessing: Characteristics of HBase.			
	Understanding MapReduce Fundamentals The MapReduce Framework:			
	Exploring the Features of MapReduce, working of MapReduce, Techniques			
	to Optimize MapReduce Jobs ,Uses of MapReduce,.			
III	Understanding Big Data Technology Foundations: Exploring the	10		
	Big Data stack: Stack of layers in Big Data Architecture, Virtualization and Big			
	Data, Virtualization approaches: server Virtualization, Application Virtualization,			
	Network Virtualization, Processor and Memory Virtualization, Data and Storage			
	Virtualization, Managing Virtualization with			
	Hypervisor, Implementing Virtualization to work with Big Data.			
IV	Understanding Analytics and Big Data: Comparing reporting and Analysis, Types of	10		
	Analytics, Points to consider during Analysis, Developing an Analytic Team,			
	Understanding Text Analytics. Analytical Approaches, History of			
	Analytical Tools, Introducing Popular Analytical Tools.			
V	Social Media Analytics and Text Mining: Introducing Social Media, Introducing key	10		
	elements of Social Media, Introducing Text mining, Understanding Text mining			
	Process, Sentiment Analysis, Performing Social			
	media analytics and opinion mining on Tweets, Mobile Analytics: Introducing			

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Mobile Analytics, Introducing Mobile Analytics Tools, Performing Mobile	
Analytics, Challenges of Mobile Analytics.	

Course Outcomes:

Course outcome	Descriptions
CO1	Identify the characteristics of datasets and compare the trivial data and big data for various applications.
CO2	Understand the concept of open source software frame work and its core components
CO3	Compare and Contrast different Hadoop supporting tools with traditional tool
CO4	How Big Data can be analyzed to extract knowledge and apply tools for big data analytics

Text Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Big Data: Black Book	Dt Editorial Services,	Edition 2016.ISBN -13: 978-
		Dreamtech Press	9351197577

Reference Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Big Data and Analytics	SeemaAcharya,	Publication:Wiley India Private
		SubhashiniChellap	Limited,1st Edition 2015.
		pan, Infosys	ISBN:978- 81-265-5478-2
		Limited	

Signature of the course coordinator

Signature of the HoD

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Department: Computer Science & Engineering Semester: II

Subject: Computer Vision
Subject Code: 24CSE22

L - T - P - C: 4-0-0-4

Sl. No	Course Objectives	
1	To review image processing techniques for computer vision	
2	To understand shape and region analysis.	
3	To understand three-dimensional image analysis techniques.	
4	To study some applications of computer vision algorithms.	

Unit	Description	Hrs
I	Introduction and Fundamentals Significance and Scope of the course, Importance of	10
	the course in societal, political and economic growth of the nation, Impact of the course	
	on societal and ethical issues and career perspective	
	Introduction: Origins of Digital Image Processing, examples, Fundamental Steps in	
	Digital Image Processing, Components of an Image Processing System, Digital Image	
	Fundamentals: A Simple Image Formation Model, Basic Concepts in Sampling and	
	Quantization, Representing Digital Images, Basic relationship between pixels, Zooming	
	and Shrinking. Image Processing Prototyping Tool: Overview, Image processing	
	toolbox, working environment and editor, Reading, loading and displaying images,	
	Saving Image and simple	
	image manipulations.	
II	Image Enhancement: Image Enhancement in the Spatial Domain: Some Basic Gray	10
	Level Transformations, Histogram Processing, Enhancement Using Arithmetic/Logic	
	Operations, Basics of Spatial Filtering, Smoothing Spatial Filters, Sharpening Spatial	
	Filters, Combining Spatial Enhancement Methods. Image Enhancement in the	
	Frequency Domain: Background, Image Enhancement in the Frequency Domain,	
	Introduction to the Fourier Transform and the Frequency, Domain, Smoothing	
	Frequency-Domain Filters,	
	Sharpening Frequency Domain Filters, Homomorphic Filtering	40
III	Image Segmentation: Detection of Discontinuities, line and spot detection, Edge	10
	detection, gradient operators, compass operators, Laplace operator, stochastic gradients.	
	Edge Linking and Boundary Detection: Thresholding- local and adaptive, Region-	
	Based Segmentation, Region Growing and Linking, Splitting and Merging.	
	Hough Transform: Principle , Line detection and Linking, Peak Detection, Circle detection.	
	uctection.	

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

IV	Shapes And Regions: N-Ary shape analysis – connectedness – object labelling and counting – size filtering – distance functions – skeletons and thinning – deformable shape analysis – boundary tracking procedures – active contours – shape models and shape recognition – centroidal profiles – handling occlusion – boundary length measures – boundary descriptors – chain codes – Fourier descriptors – region descriptors – moments.	10
V	3D Vision And Motion: Methods for 3D vision – projection schemes – shape from shading – photometric stereo – shape from texture – shape from focus – active range finding – surface representations – point-based representation – volumetric representations – 3D object recognition – 3D reconstruction – introduction to motion – triangulation – bundle adjustment – translational alignment – parametric motion – spline-based motion – optical flow – layered motion. Recap/Summary: Application of various image processing Techniques	10

Course Outcomes:

Course outcome	Descriptions
CO1	Explain the fundamentals of image processing.
CO2	Apply 3D vision techniques.
CO3	Write programs on motion related techniques.
CO4	Develop applications using computer vision techniques.

Text Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Digital Image Processing	. Rafael C G	3rd edition, 2008.

Reference Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Mastering OpenCV with Practical	D. L. Baggio	Packt Publishing, 2012
	Computer Vision Projects		
2	Computer & Machine Vision	E. R. Davies,	Fourth Edition, Academic
			Press, 2012.B

Signature of the course coordinator

Signature of the HoD

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Department: Computer Science & Engineering Semester: II

Subject: Advanced Operating System

Subject Code: 24CSE23 L - T - P - C: 4-0-0-4

Sl. No	Course Objectives
1	To gain knowledge on Operating system fundamentals
2	To acquire knowledge on process execution
3	To understand synchronization and concurrency
4	To understand managing memory in Uniprocessor systems

Unit	Description	Hrs
I	Operating System Overview Operating System objectives and functions, Evolution of Operating Systems, Major Achievements, Modern Operating Systems, Virtual Machines, OS design considerations for multiprocessors and multicore, Microsoft Windows overview, Linux, Linux Virtual Machine Architecture.	08
II	Processes Process Description and Control - Process States, description and control, execution of OS, Security issues. Threads –Processes and threads, types of threads, Multicore and Multithreading, Windows Threads and SMP Management, Linux Process and Thread Management	08
III	Distributed Deadlock Detection Introduction, preliminaries, deadlock handling strategies in distributed systems, issues in deadlock detection and resolution, centralized deadlock detection algorithms, distributed deadlock detection algorithms, hierarchical deadlock detection algorithms	08
IV	Distributed Resource Management Distributed file systems: Introduction, architecture, mechanisms for building distributed file systems, design issues, Log-structured file systems. Distributed shared memory: introduction, architecture and motivation, algorithms for implementing DSM, memory coherence, coherence protocols, design issues	08

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

V		08
	Multiprocessor Operating Systems Introduction, structures of multiprocessor operating	
	systems, operating system design issues, threads, process synchronization, process	
	scheduling, memory management, reliability/fault tolerance * Case study: PintOS:	
	Threads and Virtual memory	
	•	

Course Outcomes:

Course outcome	Descriptions			
CO1	Understand fundamental aspects of modern operating systems.			
CO2	Analyze algorithms for deadlocks, resource management, and multiprocessor systems.			
CO3	Design schemes for memory coherence and deadlock resolution using multi-processes and multithreading.			
CO4	implement mechanisms for process concurrency, distributed file systems, and shared memory across diverse operating systems.			

Text Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Operating Systems: Internals and Design Principles	William Stallings	Pearson Education Inc, 20012
2	Operating Systems,	Gary Nutt:	3rd Edition, Pearson, 2004

Reference Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Operating Systems,	Gary Nutt:	3rd Edition, Pearson, 2004

Signature of the course coordinator

Signature of the HoD

Department: Computer Science and Engineering Semester: II

Subject: Cyber Security and Digital Forensics

Subject Code: 24CSE24 L-T-P-C: 3-0-0-3

Sl. No	Course Objectives
1	Gain the knowledge of cyber security that helps to understand the implications of cybercrime
2	Understand different types of Cyber-attacks with an overview on social engineering
3	Learn about password cracking, trojan horses, backdoors, types of phishing and its related techniques
4	Appreciate the concepts of cyber forensics and digital evidence

Unit	Description	Hrs	
I	Introduction to Cybercrime : Introduction, Cybercrime: Definition and Origins of the	08	
	Word, Cybercrime and Information Security, who are Cybercriminals? Classifications		
	of Cybercrimes, Cybercrimes: An Indian Perspective, Hacking		
	and the Indian Laws, A Global Perspective on Cybercrimes.		
II	Cyber offenses: How Criminals Plan Them: Introduction, How Criminals Plan the	08	
	Attacks, Social Engineering, Cyberstalking, Cybercafe and Cybercrimes.		
	Botnets: The Fuel for Cybercrime.		
III	Tools and Methods Used in Cybercrime: Introduction, Proxy Servers and	08	
	Anonymizers, Phishing, Password Cracking, Keyloggers and Spywares, Virus and		
	Worms, Trojan Horses and Backdoors, Steganography, DoS and DDOS		
	Attacks		
IV	Understanding Computer Forensics: Introduction, Historical Background of	08	
	Cyberforensics, Digital Forensics Science, The Need for Computer Forensics,		
	Cyberforensics and Digital Evidence, Digital Forensics Life cycle.		
V	Forensics of Handheld Devices: Introduction, Understanding Cellphone Working	08	
	Characteristics, Hand-Held Devices and Digital Forensics, Toolkits for Hand-Held		
	Device Forensics, Forensics for iPods and Digital Music Devices, An illustration on		
	Real Life Use of Forensics, Techno-Legal Challenges With Evidence from Hand-Held		
	Devices, Organizational Guidelines on Cellphone Forensics		

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Course outcome:

Course outcome	Descriptions	
CO1	Describe various cybercrimes and cyber laws	
CO2	Explain different types of Cyber-attacks, Criminal plans and fuel for cybercrime.	
CO3	Illustrate Tools and Methods used in Cybercrime.	
CO4	Justify the Need of Computer Forensics.	

Text Book:

Sl No	Text Book title	Author	Volume and Year of
			Edition
1	Cyber Security: Understanding	Sunit Belapure,Nina	Ist Edition (Reprinted
	Cyber Crimes, Computer	Godbole	2018), Wiley India Pvt
	Forensicsand Legal		Ltd,ISBN: 978-81-265-
	Perspectives		21791

Reference Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Cybersecurity: Managing Systems, Conducting Testing, and Investigations	Thomas J. Mowbray	John Wiley & Sons, ISBN: 978-1-118- 69711-5, 2014

Signature of the course coordinator

Signature of the HoD

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Department: Computer Science & Engineering Semester: II

Subject: Pattern Recognition

Subject Code: 24CSE251 L-T-P-C:3-0-0-3

SI. No	Course Objectives	
1	The design and construction and a pattern recognition system	
2	The major approaches in statistical and pattern syntactic recognition. The student should also have somse exposure to the theoretical issues involved in pattern recognition system	
3	Introduce basic concepts and major techniques in statistical pattern recognition.	

Unit	Description	Hrs
I	Introduction: Definition of Pattern Recognition, Applications, Datasets for Pattern	80
	Recognition, Different paradigms for Pattern Recognition, Introduction to probability,	
	events, random variables, Joint distributions and densities,	
	moments. Estimation minimum risk estimators, problems.	
II	Representation: Data structures for PR, Representation of clusters, proximity	80
	measures, size of patterns, Abstraction of Data set, Feature extraction, Feature	
	selection, Evaluation.	
III	Nearest Neighbor based classifiers & Bayes classifier: Nearest neighbor algorithm,	
	variants of algorithms, use of for transaction databases, efficient algorithms, Data	
	reduction, prototype selection, Bayes theorem, minimum error rate classifier, estimation	
	of probabilities, estimation of probabilities,	
	comparison with NNC, Naive Bayes classifier, Bayesian belief network.	
IV	Naive Bayes classifier, Bayesian belief network, Decision Trees: Introduction, DT for	
	PR, Construction of DT, splitting at the nodes, over fitting & Pruning, Examples,	
	Hidden Markov models: Markov models for classification, Hidden	
	Markov models and classification using HMM.	
V	Clustering: Hierarchical (Agglomerative, single/complete/average linkage,	80
	wards, Partitional (Forgy's, k-means, Isodata), clustering large datasets,	
	examples, An application: Handwritten Digit recognition.	

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Course Outcomes:

Course outcome	Descriptions		
CO1	Identify the different paradigms and statistical foundations of Pattern Recognition		
CO2	Analyze the data structures and data abstraction techniques for Pattern Recognition		
CO3	Review the hierarchical and partitioned clustering techniques and its application in Pattern Recognition		
CO4	. Evaluate the use of Bayesian belief networks, decision trees and hidden Markov models for classification tasks		

Text Books:

SI No	Text Book title	Author	Volume and Year of Edition
1	Pattern Recognition	V Susheela Devi, M	Universities Press, 2011.
		Narasimha Murthy	
2	Pattern Recognition and Image	Earl Gose, Richard	PHI, 1996.
	Analysis,	Johnsonbaugh,	
		Steve Jost	

Reference Books:

SI No	Text Book title	Author	Volume and Year of Edition
1	Pattern Classification	Duda R. O., P.E. Hart, D.G. Stork,	John Wiley and sons,2000

Signature of the course coordinator

Signature of the HoD

Department: Computer Science and Engineering Semester: II

Subject: High Performance Computing

Subject Code: 24CSE252 L – T – P - C: 3–0-0–3

Sl. No	Course Objectives	
1	Study the architecture of computing technology.	
2	Understand Parallel execution models and parallel programming	
3	Learn computer intensive applications on HPC platform	
4	Understands basics of CUDA architecture.	

Unit	Description	Hrs
I	Fundamentals of computer design Introduction; Classes computers; Defining computer architecture; Trends in Technology; Trends in power in Integrated Circuits; Trends in cost; Dependability, Measuring, reporting and summarizing Performance attributes; Quantitative Principles of computer design	08
II	Introduction to Parallel Programming Motivation, Scope of Parallel Computing, Principles of Parallel Algorithm design: Preliminaries, Decomposition Techniques, Characteristics of Tasks and Interactions, Mapping Techniques for Load Balancing, Methods for containing Interaction Overheads, Parallel Algorithms Models	08
III	Programming Using the Message Passing Paradigm Principles of Message Passing Programming, Building Blocks, MPI, Topologies and Embedding, Overlapping Communication with computation, Collective Communication and computation operations, Groups and Communicators.	08
IV	Overview of Open MP Introduction, the idea of Open MP, the feature set, Open MP Language Features, Parallel Construct, Sharing the work among threads in an Open MP program, Clauses to control parallel and Work-Sharing Constructs, Open MP Synchronization Constructs.	08
V	GPU Architectures Introduction to Graphics Processing Units, Detecting and Enhancing Loop-Level Parallelism, Mobile versus Server GPUs and Tesla versus Core i7, GPU programming using CUDA	08

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Course Outcomes:

Course outcome	Descriptions	
CO1	Explore the fundamental concepts of parallel computer architecture	
CO2	Analyze the performance of parallel programming	
CO3	Design parallel computing constructs for solving complex problems.	
CO4	Demonstrate parallel computing concepts for suitable applications	

Text Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1.	Computer Architecture: A	John L Hennessy,	Elsevier, 5th Edition; 2011,
	Quantitative Approach,	David A Patterson	ISBN: 9780123838728.
2.	Introduction to Parallel Computing	Ananth Grama,	2nd edition, Pearson Education,
		Anshul Gupta, George	2007
		Karypis,	
		Vipin Kumar	
3.	Parallel Programming with	Rob Farber	1st edition, 2016, ISBN
	Open ACC,		:9780124103979
4.	Using Open MP Portable Shared	Barbara Chapman,	2008, The MIT Press, ISBN:
	Memory Parallel	Gabriele Jost, Ruud	978-0-262-53302-7.
	Programming	van der Pas	

Reference Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	HighPerfornmance Cluster	Rajkumar	Vol 1, Pearson Education
	Computing:Architectures and		
	systems		
2	Advanced Computer	Kai Hwang	McGraw Hill International Editions
	Architecture:Parallelism,Scala		
	bility,Programmability		

Signature of the course coordinator

Signature of the HoD

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Department: Computer Science & Engineering Semester: II

Subject: Deep Learning

Subject Code: 24CSE253 L - T - P - C: 3-0-0-3

Sl. No	Course Objectives		
1	To understand the theoretical foundations, algorithms and methodologies of Neural		
1	Network.		
2	To design and develop an application using specific deep learning models		
2	To provide the practical knowledge in handling and analyzing real world		
3	applications		
4	Develop and Train Deep Neural Networks.		

Unit	Description	Hr s
I	Deep learning concepts: Fundamentals about Deep Learning. Perception Learning	
	Algorithms. Probabilistic modeling. Early Neural Networks. How Deep Learning	
	different from Machine Learning. Scalars, Vectors, Matrixes, Higher Dimensional	
	Tensors. Manipulating Tensors. Vector Data. Time Series	
	Data. Image Data. Video Data.	
П	Deep learning architectures: Machine Learning and Deep Learning, Representation Learning, Width and Depth of Neural Networks, Activation Functions: RELU, LRELU, ERELU, Unsupervised Training of Neural Networks, Restricted Boltzmann Machines, Auto Encoders, Deep Learning Applications	
III	Neural networks: About Neural Network. Building Blocks of Neural Network. Optimizers. Activation Functions. Loss Functions. Data Pre-processing for neural networks, Feature Engineering. Over fitting and Under fitting. Hyper parameters.	
IV	Transfer learning and deep generative models: Deep Belief networks,	8
	Boltzmann Machines, Deep Boltzmann Machine, Generative Adversial Networks, Variants of CNN: DenseNet, PixelNet.	
V	Deep reinforcement & unsupervised learning: About Deep Reinforcement Learning.	8
	Q-Learning. Deep Q-Network (DQN). Policy Gradient Methods. Actor- Critic	
	Algorithm. About Auto encoding. Convolution Auto Encoding. Variational Tentative	
	Auto Encoding, Auto encoders for Feature Extraction.	
	Auto Encoders for Classification.	

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Course Outcomes:

Course outcome	Descriptions	
CO1	Recognize the characteristics of deep learning models that are useful to	
COI	solve real-world problems.	
CO2	Understand different methodologies to create application using deep nets.	
CO3	Identify and apply appropriate deep learning algorithms for analyzing the	
COS	data for variety of problems.	
CO4 Implement different deep learning algorithms.		

Text Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Deep Learning	IanGoodfellow,	MIT Press, 2017
		YoshuaBengio and	
		Aaron Courville,	
2	Deep Learning: A	Josh Patterson,	O'Reilly Media, 2017
	Practitioner's Approach	Adam Gibson	

Reference Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Machine Learning: A	Kevin P. Murphy	The MIT Press, 2012.
	Probabilistic Perspective		
2	Introduction to Machine	EthemAlpaydin	MIT Press, Prentice Hall of
	Learning		India, Third Edition 2014
3	Learn Keras for Deep Neural	,Jojo Moolayil,	Apress,2018
	Networks		

Signature of the course coordinator

Signature of the HoD

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Department: Computer Science and Engineering Semester: II

Subject: Business Intelligence and Data Mining

Subject Code: 24CSE261 L-T-P-C: 3-0-0-3

Sl. No	Course Objectives	
1	Understand the basics of business intelligence.	
2	To acquire the knowledge on Data warehousing techniques	
3	Learn about data patterns and association rules	
4	To know the basic concepts of classification and clustering	

Unit	Description	Hrs	
I	Introduction to Business Intelligence :Introduction to Data Information and knowledge,	8	
	Data Decision Challenge, Operational vs Information Data, Introduction to Decision		
	Support System, Introduction to Business Intelligence, Business Intelligent System		
	Components, Business Models, Introduction to		
	Data Warehouse, A Business analysis framework for DW.		
II	Data Warehouse Introduction, Data warehouse modeling, Data warehouse design,	8	
	Data warehouse technology, Distributed Data warehouse, index		
	techniques, and materialized view.		
III	Data Preprocessing and Cube Technology Introduction to Data Preprocessing, Data	8	
	Cleaning, Data integration, data reduction, transformation and Data Discretization.		
	Introduction to OLAP, Data Cube: A multidimensional model, data cube computation,		
	data cube computation methods :		
	multidimensional data analysis.		
IV	Mining Frequent Patterns and Association Rule: Introduction to association rule, market	8	
	basket analysis, frequent item set, apriori algorithm, parameter, a pattern growth		
	approach, mining closed and max patterns, pattern evaluation, pattern mining in		
	multilevel, multidimensional data space, pattern exploration		
	and application.		
V	Classification Basic concepts, decision tree, rule based classification, Bayesian belief	8	
	networks, classification by back propagation, support vector machines, lazy learners –		
	k-NN classifier, case based reasoning, model evaluation and selection, techniques to		
	improve classification accuracy, multiclass classification, semi-supervised		
	classification, ensemble methods. Clustering Analysis Cluster analysis, Partitioning		
	methods, hierarchical methods, density-based methods, grid-based methods, clustering		
	graph and network data, clustering with constrains, evaluation of clustering outliers and		
	analysis, outlier detection methods, scalable clustering algorithms.		

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University)
Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Course Outcomes:

Course outcome	Course outcome Descriptions		
CO1	Apply Business Intelligence concepts		
CO2	Identify various data mining problems		
CO3	Choose between classification and clustering solution		
CO4	Write association rules for a given data pattern.		

Text Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Data mining concepts and	Jawai Han,	Morgan Kaufmann Publishers,
	techniques	MichellineKamber,	3rd Edition.
		Jiran Pie	
2	Business modeling and Data	Dorian Pyle	Elsevier Publication
	Mining		

Reference Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Introduction to Data Mining	Vipin Kumar	Pang-Ning Tan, Pearson
2	Building the Data Warehouse,	William H Inmon,	Wiley Publication 4 th Edition
3	Introduction to Business Intelligence & Data Warehousing	IBM, PHI	
4	Database Systems	Thomas Connolly, Carolyn Begg	Pearson 4th Edition.

Signature of the course coordinator

Signature of the HoD

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Department: Computer Science and Engineering Semester: II

Subject: Advanced Storage Area Networks

Subject Code: 24CSE262 L-T-P-C: 3-0-0-3

Sl. No	Course Objectives	
1	Understand Storage Area Networks characteristics and components.	
2	To have exposure on different input output techniques and file system	
3	To acquire the knowledge on storage virtualization	
4	To know about SAN Architecture and its software components.	

Unit	Description	Hrs
I	Introduction: Server Centric IT Architecture and its Limitations, Storage – Centric IT Architecture and its advantages, Case study: Replacing a server with Storage Networks Intelligent Disk Subsystems: Architecture of Intelligent Disk Subsystems, Hard disks and Internal I/O Channels, JBOD, Storage virtualization using RAID and different RAID levels, Caching: Acceleration of Hard Disk Access; Intelligent disk subsystems, Availability of disk subsystems.	8
II	I/O Techniques: The physical i/o path from the cpu to the storage system, SCSI: basics, storage networks, Fibre channel protocol stack: Links, ports and Topologies, FC0, FC1, FC2, FC3, Link and Fabric services, FC4 and ULPs, Fibre channel SAN: Point-to-point, Fabric and Arbitrated loop topology. Hardware components for Fibre channel SAN, InterSANs, and Interoperability of FC SAN.	8
III	IP Storage, File system and NAS IP Storage Standards: iSCSI, iFCP, mFCP, FCIP, and iSNS, TCP/IP and Ethernet as an I/O technology, Migration from SCSI and FC to IP storage. Local file systems: File systems and Databases, Journaling, Snapshots, Volume manager, Network file systems and file servers, Shared disk file systems, Comparison: NAS, FC SAN and iSCSI SAN.	8
IV	Storage Virtualization and Application of Storage Networks Definition of Storage virtualization, Implementation considerations, Storage virtualization on block or file level, Storage virtualization on various levels of the storage network, Symmetric and asymmetric storage virtualization in the network. Definition of the term 'Storage Network', Storage sharing: Disk storage pooling, Dynamic tape library sharing, Data sharing. Availability of Data	8

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

V	SAN Architecture and Hardware devices: Overview, Creating a Network for storage;	8
	SAN Hardware devices; The fibre channel switch; Host Bus Adaptors; Putting the	
	storage in SAN; Fabric operation from a Hardware perspective.	
	Software Components of SAN: The switch's Operating system; Device	
	Drivers; Supporting the switch's components; Configuration options for SANs.	

Course Outcomes:

Course outcome	Descriptions
CO1	Identify the need for performance evaluation and the metrics used for it
CO2	Apply the techniques used for data maintenance.
CO3	Realize strong virtualization concepts
CO4	Analyse the architecture of SAN

Text Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Storage Networks Explained	Ulf Troppens, Rainer	Wiley India,2013
		Erkens and Wolfgang	
		Muller	
2	Storage Area Network	Richard Barker and Paul	Wiley India,2006
	Essentials: A Complete Guide to	Massiglia	
	understanding and		
	Implementing SANs		

Reference Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Information Storage and	G. Somasundaram,	EMC Education Services,
	Management	AlokShrivastava	Wiley- India, 2009
		(Editors)	

Signature of the course coordinator

Signature of the HoD

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Department: Computer Science & Engineering Semester: II

Subject: Advanced Mobile Computing

Subject Code: 24CSE263 L-T-P-C: 3-0-0-3

Sl. No	Course Objectives
1	To acquire the knowledge of mobile communications and systems
2	To learn the constituent elements of mobile computing
3	To understand databases, data dissemination and broadcast systems in mobile computing
4	To appreciate the concepts of Mobile IP Network Layer and Mobile Transport Layer in mobile computing

Unit	Description	Hrs
I	Mobile Communications-Overview: Mobile computing; Mobile computing architecture; Mobile devices; Mobile system networks; Data dissemination; Mobility management; Mobile phones, Digital Music Players, Handheld Pocket Computers, Handheld Devices, Operating Systems, Smart Systems, Limitations of Mobile Devices, Automotive Systems.	08
II	GSM and Similar Architectures: GSM – Services and System Architectures, Radio Interfaces, Protocols, Localization, Calling, Handover, General Packet Radio Service, High-speed circuit-switched data, DECT.	08
III	Mobile IP Network Layer and Mobile Transport Layer: IP and Mobile IP Network Layers Packet Delivery and Handover Management, Registration, Tunneling and Encapsulation, Route Optimization, Dynamic Host Configuration Protocol. Indirect TCP, Snooping TCP, Mobile TCP, Other Methods of TCP – layer Transmission for Mobile Networks.	08
IV	Databases: Database Hoarding Techniques, Data Caching, Client – Server Computing and Adaptation, Transactional Models, Query Processing, Data Recovery Process, Issues relating to Quality of Service	08
V	Data Dissemination and Broadcasting Systems : Communication Asymmetry, Classification of Data – Delivery Mechanisms, Data VBroadcast Models, Selective Tuning and Indexing Techniques, Digital Audio Broadcasting, Digital video Broadcasting.	08

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Course Outcomes:

Course outcome	Descriptions
CO1	Interpret various mobile communication techniques
CO2	Justify the need of Mobile IP Network Layer and Mobile Transport Layer in mobile computing
CO3	Analyze the performance of GSM systems
CO4	Analyze Data Dissemination and Broadcasting Systems used in mobile computing

Text Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Mobile Computing	Raj Kamal	Oxford University Press, 2007.

Reference Books:

Sl No	Text Book title	Author	Volume and Year of Edition
1	Mobile Computing	Asoke Talkukder,	Applications and Service Creation,
	Technology	Roopa R Yavagal	Tata McGraw Hill, 2007
2	Mobile Computing Principles	RezaB'Far	Designing and Developing Mobile Applications with UML and XML, Cambridge Universitypress, 5th Edition, 2006.
3	Uwe Hansmann, LothatMerk, Martin S Nicklous and Thomas Stober	Principles of Mobile Computing	Springer International Edition, Second Edition, 2005.
4	Schiller	Mobile Communication	Pearson Publication, 2004.

Signature of the course coordinator

Signature of the HoD

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

Department: Computer Science & Engineering Semester: II

Subject: Cyber Security and Digital Forensics Lab

Subject Code: 24CSELB2 L - T - P - C: 0-0-3-1.5

The following exercises have to be performed using various software tools/utilities mentioned software tools:

- 1. Cyber check 4.0 Academic version
- 2. Cyber CheckSuite
- 3. Mobile check
- 4. Network Session Analyser
- 5. Win LiFT
- 6. True Imager
- 7. True Traveller
- 8. PhotoExaminer 1.1
- 9. CDRAnalyzer

Sl.No	Experiment Description
1	Disk Forensics
	1. Identify digital evidences
	2. Acquire the evidence
	3. Authenticate the evidence
	4. Preserve the evidence
	5. Analyze the evidence
	6. Report the findings

(A constituent College of Siddhartha Academy of Higher Education, Deemed-to-be-University) Scheme of Teaching and Examination (88 Credits, 2024-SCHEME)

2	Network Forensics
	1. Intrusion detection
	2. Logging (the best way to track down a hacker is to keep vast records of activity on a network with the help of an intrusion detection system)
	3. Correlating intrusion detection and logging
3	Device Forensics
	1. PDA
	2. Mobile phone
	3. Digital Music
	4. Printer Forensics
	5. Scanner Forensics

Signature of the course coordinator

Signature of the HoD